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Note 

Simple Exact Test for Well-Known 
Molecular Dynamics Algorithms* 

Computer simulation via molecular dynamics is now a widely used approach to 
the study of condensed matter physics. It consists in the solution of the equations of 
motion for a large number of particles, interacting with forces suited to model 
fluids, solids, clusters, surfaces, etc. 

A number of well-known algorithms are commonly used for the numerical 
solution of the equations of motion mZ=F(x). They are still based on methods 
nearly 100 years old. (A clear and comprehensive review was written by Milne in 
1953 [ 11). The choice of a particular algorithm is generally done on the basis of the 
accuracy of the solution versus computer cost (time and memory) and difficulty of 
programming. The accuracy for a given amount of computer time varies with the 
number of coupled equations and the form of the force law F(X). In a typical system 
studied with molecular dynamics the number of particles N ranges from 2 to 
160,000 and the force F is highly nonlinear. The evaluation of the accuracy becomes 
difficult and imprecise. A check for a lower bound on the acceptable accuracy is the 
conservation of the constants of motion (typically the energy). It is difficult to 
formulate a simple useful criterion to evaluate the performance of the various 
algorithms. 

Recently Berendsen and Van Gunsteren [Z] compared six numerical methods 
commonly used in molecular dynamics, in a simple and more useful way than 
previous workers [3]. The comparison was made by applying u/l the algorithms to 
the same one-dimensional harmonic oscillator. Because it provides an exact picture 
of the relative accuracies and efficiencies of the different methods (the exact solution 
being available as a reference), this idealized special case is a useful caricature of the 
more realistic many-body problems to which molecular dynamics is generally 
applied. Indeed, although the simple linear force is far from being a complete model 
for the particle interactions in fluids and solids, the corresponding particle trajec- 
tories in many-body systems do closely resemble the simple harmonic oscillations 
(see, for example, Fig. 3 in the review by Hoover and Ashurst [4]). This is a 
consequence of the fact that in solids and dense fluids the particles are seldom far 
from the local potential minimum. 

For the simple one-dimensional harmonic case, the difference equations 
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associated with various algorithms can be exactly solved analytically (solutions can 
be found scattered in numerical analysis textbooks). The comparison can therefore 
be made even more precise and the behavior of the various numerical solutions can 
be understood in terms of phase shifts and decaying rates. In what follows we dis- 
cuss these exact solutions of the difference equations associated with the algorithms 
considered by Berendsen and Van Gunsteren. We also add for comparison the 
Runge-Kutta method, because it is one of the most widely used in molecular 
dynamics. 

The purpose of this note is twofold: (.i) to gather In one place (see Fig. 1) the 
most commonly used algorithms in traditional molecular dynamics and (ii) to 
suggest a simple criterion to compare their performances (see Fig. 2). 

The resuhs reviewed here are strictly true only for the case of the one-dimen- 
sional harmonic oscillator. Many other techniques, not discussed here, could be 
applied to that problem. We feel that the exact unified picture available for this sim- 
ple system, using many-body techniques, serves as a useful reference for the more 
complicated many-body systems of molecular dynamics. We consider approximate 
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FIG. 1. Relative accuracies of approximate solutions of the one-dimensional harmonic oscillator. The 
largest deviation 3.~ =x approximarr - -~cxact during the first oscillator period is compared as a function crf 

step length 6 for various algorithms. (The solution of Beeman’s method coincides with the one of 
StGrmer’s method.) For the implicit methods, Adams-Moulton and “Gear” 4, the results fw the 
converged corrector schemes are plotted. 
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FIG. 2. ReIative efficiencies of the algorithms of Fig. 1. The largest deviation Ax is here plotted as 
function of the number of force-evaluations (as a measure of computer time). For the implicit methods, 
Adams-Moulton and “Gear” 4, the results for 1 and 2 iterations are plotted. 

solutions of the second-order ordinary differential equation of motion for a one- 
dimensional harmonic oscillator (with unit mass and unit spring constant) 

which is equivalent to the pair of first-order differential equations 

i = 0, c= -,y. 

With the initial conditions .x0 = 1 and ~7~ = 0 the analytic solution is 

x=cos(t). 

The “Verlet” centered-difference algorithm [S] was used by Cowell and Crom- 
melin [6] 77 years ago to calculate the orbit of Halley’s comet, and is attributed by 
Milne to the work of StGrmer in 1907. It is equivalent to a “leap-frog” version of 
the two first-order equations given above. It can be used for the particular case of 
Newton’s second-order differential equation, which has no explicit dependence on 
the first derivative. The centered-difference Stiirmer equation 

s, + 1 - - 9x, + x,,- 1 = -x, 02, t=flb (1.0) 
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is symmetric and therefore preserves the time-reversible character of the original 
second-order differential equation. The solution satisfying our initial condition 
x,=1 and .x+~=s_~ is a cosine function with a scaled frequency, 

-x,, = CO+ 62 j (1.1j 

where I, is 

1 i=-cos-’ 
6 ( ) 

1-T w 1 +zi,62+&t34. (1.2j 

For a fixed value of the time step 6 the deviation dx from the true solution 
3x = cosiltj - cos(,t) can be expressed in terms of a time-dependent phase shift, 
@ = (,? - 1) t. The phase shift increases linearly with time, so that the two solutions 
first become 180” out of phase, and then in phase again, at integral multiples of the 
recurrence time p = 2?c,i( 2 - 1) ( = 2400 periods of the oscillator for 6 = 0. i ). The 
corresponding trajectory deviation varies, for i close to 1, as Ax,- -@ sin(t) - 
(@‘/2) cos(t), where the first term Ax w ( $/24)r sin(t) dominates, at times small 
compared to 2/( i - 1) (764 oscillator periods for 6 = 0.1). We can then expect the 
amplitude of the deviation to increase in time, initially linearly, up to a maximum 
value of 2, when the phase shift is exactly 180”, and then decrease again to 0 as the 
phase shift approaches 360”. On the other hand, for a fixed value of the time (still 
small compared to 2/(;1, - 1 j), this amplitude is a linear function of (A - I), and, 
from Eq. (1.2), a quadratic function of 6. This can also be deduced from Fig. 1, 
where the largest deviation of the trajectory during the first oscillator period is plot- 
ted as a function 6: the slope of the line corresponding to the Stormer algorithm is 
2. We follow Berendsen and Van Gunsteren in defining the “apparent order” of the 
algorithm as the smallest power of 6 in the trajectory deviation at a fixed time. We 
then assign to Stijrmer’s algorithm an apparent order of 2. More often, however, 
the “order” of algorithm refers to the local accuracy, defined as the last correct term 
in the truncated series expansion for a single time step. With such a definition 
Stiirmer’s scheme would be a third-order algorithm, rather than second, because 
the first neglected term in the expansion is -.~,,(6”/12). 

The other commonly used algorithms for molecular dynamics are methods (of 
second- and higher order) for solving first-order differential equations and can be 
grouped into two categories: those derived from Adams implicit methods and the 
Runge--Kutta explicit methods. In implicit methods a prediction for the position is 
made; velocity and force are next evaluated and used for correcting the position. 
The procedure can then be iterated, using the new position (and velocity) as a new 
prediction. Because convergence is rapid, the solution of the algorithm is essentiarly 
defined by the corrector equations, to which the solution typically converges closely 
in one or two iterations. 

There are a number of proposed second-order schemes, of which we will consider 
three predictor-corrector implicit methods: the “modified-Euler” method mentioned 
in [2]. the method used by Rahman [7], and its version suggested by Beeman [S]. 

JS! ‘73 2.16 
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The “modified-Euler” and Rahman methods use an Adams-Moulton second- 
order corrector, but the predictors differ slightly. The predictors are respectively: 
-x,+ 1 =x, + v, 6 + a,(6’/2) in the “modified-Euler” method and x, + i = x,~, + 
2v,6 in the method used by Rahman. The second-order Adams-Moulton corrector 
has the form of the well-known trapezoidal formula: 

6 
v II + 1 =U,+(a,+1+4,)~ 

6 
(2.0) 

x n+ 1 =xn+(~L+l+~,,)~. 

For the harmonic oscillator arr = -x,, so that the system of two equations for the 
corrector can be combined into one equation, 

,I + , - 2x,, + x,z - , = -x, 
d2 

x 
1 f S’jm’ 

m = 4, (2.1) 

which is identical to Eq. (l.O), but with a scaled time step. The solution is of the 
same form as Eq. (l.l), but the multiplicative factor 3, is now given by 

i.=~cos-l l- 
[ 

ii2 
2(1 + S2/4) 1 . (2.2) 

Scaling of the time step does not change the apparent order of the algorithm, but 
produces a trajectory deviation, dx - (6’/12) t sin(t), twice as large as the Stijrmer 
method and with the opposite sign. Both Rahman’s and the “modified-Euler” 
methods correspond therefore, in the limit of an infinite number of iterations, to the 
Stijrmer scheme, with a slightly worse accuracy. It is interesting to note that the 
“modified-Euler” predictor has the same form as the second-order Runge-Kutta 
method. For an application see Lorenz [9]. 

Beeman [S] proposed a combination of explicit predictor (P) and implicit 
corrector (C) formulas that appears to increase the accuracy in the evaluation (E) 
of the velocities. His algorithm can be used in two different ways: 

(i) PEC(v): the prediction is used to evaluate the force and correct the 
velocity, but no correction is performed on the position. This scheme is identical to 
Stormer’s [2]; 

(ii) PEC(r) EC(v): the prediction is used to evaluate the force, the position is 
corrected, the force is evaluated again and used to correct the velocity. 

The second scheme can be iterated. But for the harmonic oscillator it converges in 
one step to an equation of type (2.1) with m = 6. The dominant term at small times 
in the trajectory deviation, dx- (d2/24) t sin(t), is as large as in Stormer’s case, but 
with the opposite sign. This second version of the Beeman algorithm is then again 
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equivalent to Stormer’s. Therefore the first version, which requires half as many 
force evaluations, is preferred. 

Simplicity can be sacrificed for a loo-fold gain in accuracy by using higher order 
methods. As a representative higher order implicit algorithm we will consider here 
the algorithm referred to as “Gear” 4 by Berendsen and Van Gunsteren [2]. It is a 
generalization of the Nordsieck formulation to second-order differential equations 
and essentially solves the differential equations not only for the position and the 
velocity but also for the second and the third derivatives of the position. We refer to 
the original work for details [lo]. What is particularly interesting is the simple 
form assumed by the corrector in the so-called force representation 181: 

CT, f 1 = 0, + (k, + If 8Q,, - a,, ~ 1) fij L 
-2 i 3.0) 

St, i 1 =x,,+u,~6t(a,,,+ha,,-n,-:)~. 

Although the equations appear irreversible, for the harmonic oscillator they can be 
reduced again to one single reversible equation identical to (2.1), with m = 12 in the 
scaled time step. To show this, substitute U, - v,,_ , ) from the first of Eq. (3.0) into 
the expression for (s, +~ r - x,,) - (x, - x,, _, ) obtained by applying the second of 
Eq. (3.Oj at two successive time steps. In this case the scaling of the time step 
produces an extra term in 6’ in the trajectory deviation that exactly cancels the 
term in 8” present in Stormer’s solution. The dominant term in the trajectory 
deviation becomes dx - - (d4/480) t sin(t) and therefore the algorithm has an 
apparent order of 4. The time dependence of the error is nevertheless the same as in 
the other reversible examples, namely a phase shift that increases linearly in time, 
causing the true and the numerical solutions to be exactly 180” out of phase and 
then in phase again and so on, with a period much longer than was the case for our 
second-order algorithms (three orders of magnitude larger than for the Stiirmer’s 
algorithm with 6 = 0.1). 

The last example we will consider is the explicit RungeeKutta algorithm, which 
involves calculating the forces at intermediate steps (four in the most commonly 
used fourth-order version). The numerical fourth-order equations for the velocity 
and the position of the harmonic oscillator assume a simple form: 

Again they can be rewritten as one single equation: 

(4.0) 

X,Z+L-2x,,+x,Z+1= -x,, a2 (l-;)+x,~$+~). (4.1) 
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This algorithm is irreversible. The solution satisfying the initial conditions x0 = 1 
and L’~ = 0 is in this case a cosine function with a time dependent amplitude, 

where the factor d becomes 

1 
;1=5 tan-’ 

1 

6(1-6’/6) 

1 

d4 

1 - P/2 + P/24 
-1-z. 

For any useful value of 6(6 -C 2 ,‘;i) the amplitude of the solution slowly decays 
to zero. 

The accuracies of the algorithms are compared as functions of the time step 6 in 
Fig. 1. We plot there the maximum deviation from the true trajectory 
Ax=x approximate - ?ce~act during the first oscillator period, according to the analytical 
solutions of our difference equations. The slopes of the plotted lines are well 
described by the apparent order of the algorithms, within 1% even for the largest 6 
shown in the figure. In Fig. 2 a different comparison is made by considering the 
accuracies for a given amount of computer time rather than for a given time step. 
We plot here the maximum trajectory deviation versus the number of force 
evaluations, as these are usually the most time-consuming operations. The trajec- 
tory deviation of the fourth-order Runge-Kutta method is increased by about two 
orders of magnitude; although worse than Stormer’s solution for a large time step, 
it becomes more efficient already at about 40 force evaluations per period, 
corresponding to 6 = 0.16 for Stiirmer, 6 = 0.63 for Runge-Kutta, and a deviation of 
less than 0.5% in the first period. The Runge-Kutta method is therefore superior, 
even in efficiency, to the lower order schemes. For the implicit methods we plot 
here the solutions iterated only once and twice: the deviation is larger than the 
exact solution (limit of an infinite number of iterations), and the efficiency is smaller 
and smaller. The second-order Adams-Moulton method, for example, loses about a 
factor of n in efficiency if it is iterated n times. Although not true in general, a 
similar behavior is found for the Newton’s equations of motion for a large number 
of particles interacting with a Lennard-Jones (Y-‘~-v~) potential (see, for 
example, [7] ). 

Higher order methods are obviously more accurate but. also, more expensive. 
The best performance, as suggested by Fig. 2 for our model, is still exhibited by the 
“Gear” 4 algorithm. The Runge-Kutta method, although less efficient than 
“Gear” 4, is more efficient than the lower order algorithms in a useful range of 
values for the time step. Its relative simplicity often makes it preferable to other 
fourth-order algorithms. 

A second interesting aspect of the numerical solutions is their behavior in time 
(for a fixed value of the time step) and how this is connected with the reversibility 
of the difference equations. The trajectory deviation in our simple model can be 
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described in terms of a phase shift, which increases quadratically in time and makes 
the true and the analytic solutions out of phase and in phase again periodically, 
with a period determined by the time step 6 and the order of the algorithm. The 
amplitude of the solution remains constant for reversible equations, and changes 
(with damping in the forward direction) for irreversible equations. The amplitude of 
the Rung+Kutta solution in the forward direction, for example, is decreased by 
10 % in 241 periods of the oscillator, when 6 = 0.4. Of the six schemes that we have 
considered, only Runge-Kutta is irreversible, The other five are reversible. When 
the four implicit reversible schemes are used with only a few iterations, however, 
they produce irreversible, damped solutions. For example, the solution of the 
Adam-Moulton algorithm iterated only once, x1, is damped by 10% after fewer 
than 20 oscillator periods when 6 = 0.2. 
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